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This paper reports results of the computation of the drag force exerted on an oscillating object in quantum
turbulence in superfluid 4He. The drag force is calculated on the basis of numerical simulations of quantum
turbulent flow about the object. The drag force is proportional to the square of the magnitude of the oscillation
velocity, which is similar to that in classical turbulence at high Reynolds number. The drag coefficient is also
calculated, and its value is found to be of the same order as that observed in previous experiments. The
correspondence between quantum and classical turbulences is further clarified by examining the turbulence
created by oscillating objects.
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I. INTRODUCTION

In recent years, quantum turbulence has become an estab-
lished research area in low-temperature physics.1,2 The simi-
larities and differences of quantum turbulence in relation to
classical turbulence comprise one area of interest of quantum
turbulence. For example, although both classical and quan-
tum turbulences consist of eddies or vortices, these two kinds
of turbulences are quite different in terms of their hydrody-
namic properties.

First, classical fluid can have arbitrary vorticity, while in
contrast the vorticity in superfluid 4He is quantized; circula-
tion around a quantized vortex is �=h /m, where h is
Planck’s constant and m is mass of 4He atom, with the core
size of a quantized vortex given by the healing length of
superfluid 4He, which is about the atomic size of 4He. More-
over, quantized vortices cannot be generated under usual ex-
perimental conditions, unlike eddies in classical fluids. In-
stead, remnant vortices are essential for the generation of
quantum turbulence. It is believed that remnant vortices are
usually pinned to the roughness of the wall.3 Indeed, Hash-
imoto et al.4 experimentally showed that quantum turbulence
cannot be generated without remnant vortices.

Second, classical fluid is viscous, while superfluid 4He
consists of viscous normal fluid and an inviscid superfluid
according to a two-fluid model. The two fluids are coupled in
turbulence through mutual friction, which is the interaction
between vortices and normal fluid. The ratio of the two fluids
is temperature dependent, and the normal fluid dominates the
fluid if the temperature is close to the transition temperature,
while in the limit of zero temperature, the superfluid compo-
nent dominates the fluid, and pure quantum turbulence is
achieved. The attention of the present study is confined to
this latter limiting case.

In spite of the above distinct properties, quantum and
classical turbulences also exhibit similarities. Kolmogorov’s
law, which is a statistical law found in a classical turbulence,
has also been observed in quantum turbulence both experi-
mentally and numerically.5–9 This law can thus be taken to be
universal over quantum and classical turbulences.

Under this motivation, quantum turbulence has recently
been studied, and accordingly the progress of experimental
techniques has given rise to a variety of methods to create

and observe quantum turbulence. To both create and detect
quantum turbulence, objects oscillating in a superfluid, such
as spheres, grids, thin wires, and tuning forks are often
employed.4,10–16 The most commonly measured physical
quantity is the velocity of the oscillating objects. At tempera-
tures lower than 1 K, the velocity exhibits the clear transition
from laminar to turbulent state when the driving force is
increased.17 For magnitudes of velocities less than about 50
mm/s, the drag force is proportional to the oscillation veloc-
ity due to collisions between the oscillating object and some
remaining excitations. At higher magnitudes of velocity, the
drag force is proportional to the square of the oscillation
velocity magnitude because turbulence is generated around
the object.

These results also describe a similarity between quantum
and classical turbulence; in classical fluid, the drag force on
an object in a uniform flow at high Reynolds number is
described by

FD =
1

2
CD�AU2, �1�

where CD is the drag coefficient, � is the density of the fluid,
A is the projection area of the object normal to the flow, and
U is the flow velocity.17 This relation could be applicable to
quantum turbulence created by an oscillating object. At low
Reynolds number, Stokes’s drag force acts on the object,
which is proportional to the magnitude of the flow velocity,
with the result that the drag coefficient CD becomes inversely
proportional to the magnitude of the flow velocity. Fitting
experimental results to a relationship of the form of Eq. �1�,
we derive a constant drag coefficient, which is of order unity,
as for classical turbulence.

In this paper, we shall further add to knowledge of the
similarities of quantum and classical turbulences by present-
ing numerical simulations of the drag force and coefficient
on the oscillating object. However, in calculating the drag
force numerically, the pressure on the object needs to be
calculated over the entire surface of the object. The pressure
at each point on the object can be calculated from the veloc-
ity field by Euler’s equation, and the velocity field is gener-
ated by the vortices. It is possible to calculate the pressure if
the number of the vortices is relatively small,18 but it is dif-
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ficult with current computational resources to integrate the
pressure in quantum turbulence in cases where a large num-
ber of vortices exist. As a consequence, we shall introduce a
method to evaluate the drag force. We assume that the oscil-
lating object does work on the fluid when the vortices are
grown by the object and that a drag force is caused as a result
of the work. It is shown later that the drag force can be
estimated from the energy given to the fluid by the object in
an equilibrium state of quantum turbulence. The increase in
the kinetic energy of the fluid can be evaluated from the
energy of vortices grown by the object. Finally, from the
energy given per unit time divided by the velocity of the
object we derive the drag force.

In this paper, the drag force in quantum turbulence is
targeted for the following reason: the drag force becomes
definite according to the method of this paper only if the
vortices are grown by the oscillating object. In the laminar
regime, it is expected that the drag force is caused by colli-
sions between the object and excitations and that the growth
of vortices is not essential. In the turbulent regime, on the
other hand, the drag force is caused by the growth of vorti-
ces. For this reason, we focus on the dynamics of vortices
around an oscillating object and solve the equations of mo-
tion for the vortices numerically.

In the simulation, we consider an object oscillating with a
constant magnitude of velocity v and estimate the drag force
due to the vortices that is the drag force Fdrag is described in
the form Fdrag= f�v�. Note that this is in contrast to experi-
mental studies, which measure the oscillation velocity of the
object for a certain driving force, obtaining the velocity v
= f−1�Fdrag�. The functional relation Fdrag= f�v� used in the
present simulations is thus inverse to the relation used in the
experiments, but it is worth comparing the results for the
following reason. As we shall see in Sec. III, when the object
oscillates, remnant vortices are stretched and the vortex
tangle grows, which results in the drag force on the object.
Finally, the vortex tangle reaches an equilibrium state of
quantum turbulence. The drag force is then uniquely deter-
mined by the oscillation velocity in the simulation. In an
experimental equilibrium state10–14,16 on the other hand, the
drag force responsible for the dissipation by vortices must be
equal to the driving force that injects the energy into the
system. In addition, the oscillation velocity is measured un-
der a constant driving force, namely, drag force in an equi-
librium state of turbulence in the experiments. Hence there is
one-to-one correspondence between the oscillation velocity
and the drag force, which allows us to compare the drag
force of the simulation with that of the experiments.

The coupled dynamics of vortices and the oscillating ob-
ject is not considered in this work, which is validated by
verifying that the drag force depends only on the oscillation
velocity. The oscillation of the object causes the growth of
vortices, and the rate of the growth depends on the oscilla-
tion velocity because the vortices attached to the object are
stretched by the object �details in Sec. III�. The vortex dy-
namics are influenced only by the magnitude of the oscilla-
tion velocity irrespective of whether the dynamics of the ob-
ject are considered or not. This is because since the drag
force is evaluated from the rate of the vortex growth, the
drag force does not depend on the details of the motion of
the object but the oscillation velocity.

A previous numerical simulation of an oscillating sphere
was performed by Hänninen et al.19 They used the same size
of the sphere and frequency of the oscillation as the experi-
ment of Shoepe et al.10 The simulation seems to show a
growth of vortices toward turbulence, but an equilibrium
state of quantum turbulence is not achieved, which differs
from the present results. This is because in Hänninen et
al.’s19 study the vortices extending between the wall and the
sphere remained attached and continued to generate vortex
rings, while in our simulations, mature vortices are soon de-
tached from the object and the remaining vortices are able to
grow successively �details in Sec. III�. It is important to note
that the drag force cannot be calculated from the simulations
of Hänninen et al.19 in the manner of the present study, since
our method assumes an equilibrium state.

The contents of this paper are as follows. In Sec. II, we
shall clarify the configuration and formulation of the model
and introduce the equations of motion required in the dynam-
ics of quantum turbulence. In Sec. III, we shall describe the
process whereby quantum turbulence is generated by an os-
cillating object. In Sec. IV, we shall introduce the present
proposed method of evaluating the drag force on the oscil-
lating object and show the dependency of the drag force on
the velocity of the object. Section V is devoted to the con-
clusion and the discussion.

II. MODEL AND FORMULATION

Superfluid 4He at 0 K can be treated mathematically as an
ideal incompressible fluid of vanishing viscosity. In a super-
fluid, any circulation is quantized in units of �. The vorticity
is infinitely distributed on thin vortex core, whose size is the
order of 1 Å so that the circulation around the vortex fila-
ment is restricted to �.3 With these features, it is valid to
adopt the vortex filament approximation, which regards a
vortex as a line. Numerical study of quantum turbulence can
be accomplished by solving the equations of motion for the
vortex filaments that form the turbulence.20,21 According to
Helmholtz’s theorem, a vortex filament moves with super-
fluid velocity on the vortex. In an infinite system of super-
fluid, the superfluid velocity is equal to the velocity gener-
ated by vortex filaments, which takes the form of the Biot-
Savart integration,

v��r� =
�

4�
�

L

�s1 − r� � ds1

�s1 − r�3
, �2�

where s1 is a position vector on a vortex and the integration
is performed over all the vortex lines. In attempting to deter-
mine a velocity field at a certain point r=s on a vortex, Eq.
�2� diverges as s1→s. The divergence is evaded by introduc-
ing cut-off parameter a0 in Eq. �2�.

In the presence of a boundary, additional superflow vb
appears so as to satisfy the boundary condition for an invis-
cid fluid,

vs · n = 0,
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vs = v� + vb, �3�

where n is a vector normal to the boundary. While many
possible geometries may be considered for the vibrating ob-
jects, in the present study we restrict attention to the sphere
for simplicity.

For a velocity field generated by an infinitesimal element
ds of a closed-loop vortex, Eq. �3� is satisfied by considering
an image vortex inside the sphere.22,23

The image vortex consists of two parts: a radial image dsr�
and a tangential image dst�. In Fig. 1, the origin is set at the
center of the sphere, a is the radius of the sphere, s is a radius
vector of the vortex element, dsr is a radial component of ds,
and dst is a tangential component defined as dst=ds−dsr.
The tangential image is located at a2 /s from the origin and
antiparallel to dst. Its length is �a /s�2dst, and it has circula-
tion �s /a��. The radial image directs from dst� to the origin,
its length is a2 /s and it has circulation �dsra��.

When the sphere moves with the velocity up, the bound-
ary condition �Eq. �3�� is satisfied in a reference frame that
moves with the sphere:

�vs − up� · n = 0. �4�

The extra term in the parenthesis is canceled out by adding
the following term to vb:

vu�r� = ��u�r� ,

�u�r� = −
1

2
�a

r
�3

up · r , �5�

where vu is a flow induced by the motion of the sphere and
determined by the instantaneous velocity of the sphere.24

Thus vb is obtained by adding the contribution from the im-
age vortices and the velocity field given by Eq. �5�.

The dynamics of the vortices are completely determined
by the above formulation. When two vortices cross or when
a vortex becomes close to a spherical boundary, it is theo-
retically known that reconnection, which is topological
change, occurs.25 In the framework of the vortex filament
model, the details of the vortex core are neglected, and so
these formulations do not describe the dynamics of the re-
connection. In the present numerical simulation, an excep-
tional routine is included in our numerical code to allow
reconnection to occur when a vortex approaches another vor-
tex or a spherical boundary within the numerical
resolution.26

It is thought that quantum turbulence originates from rem-
nant vortices rather than from the intrinsic nucleation of
vortices.3,4,15 Thus we inject vortex rings toward the oscillat-
ing object to induce quantum turbulence, considering the ex-
periment of the Osaka group.15 This approach using the in-
jection of vortices requires the consideration of two
parameters: the ring size and the time interval in which the
vortices are injected. The ring size can be estimated experi-
mentally by the time of flight for the vortex ring, and we
utilize the value of the ring size 1 �m.15 We assume that the
time interval is smaller than the period of the oscillation, say,
0.05 ms.15 In order to replicate the conditions of Ref. 15, in
the present study the same parameter values as this previous
study are used, such as the radius of sphere and the oscilla-
tion frequency of the sphere. The diameter of the sphere is
3 �m, the frequency of the oscillation is 1590 Hz, while the
oscillation velocity is chosen in the range of 30–90 mm/s.

III. DEVELOPMENT OF TURBULENCE

The time evolution of the turbulence generation is shown
in Fig. 2 and Ref. 27. The sphere oscillates horizontally, and
vortex rings are injected from the bottom of the medium
�Fig. 2�a��. When the vortex rings collide with the sphere,
reconnection occurs and the vortices are attached to the
sphere. It can be seen that the attached vortices are stretched
as the sphere moves �Figs. 2�b� and 2�c��. Due to the succes-
sive injection of vortex rings, the process is repeated and the
stretched vortices form a tangle around the sphere �Fig.
2�d��. The vortices grow in size and are then detached from
the sphere as follows. The flow caused by the motion of the
sphere �Eq. �5�� drives the end points of the attached vortices
to the stagnation point of the sphere. A pair of the end points
of the vortex approaches each other as they converge to the
stagnation point. Finally, reconnection of the pair of the end
points then occurs and the vortex is detached from the sphere
�Fig. 2�c��. In spite of the detachment of the vortices, the
oscillating sphere still sustains the vortex tangle.

Figure 3 shows the vortex line length at different oscilla-
tion velocities as a function of elapsed time. Only the vortex

FIG. 1. Image vortices in a sphere for a vortex element.

(b)(a)

(c) (d)

t t

tt

= 0.19 ms = 0.40 ms

= 1.00 ms= 0.58 ms

FIG. 2. �Color online� The time evolution of turbulence genera-
tion for the case of a sphere oscillating with a velocity magnitude of
90 mm/s. See the text for further details.
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line length inside the computational box �40 �m� 3 is calcu-
lated. In Fig. 3, the line length increases in the first 0.5 ms as
the vortex rings are injected. After the vortices are attached,
the vortices are stretched and correspondingly the line length
continues to increase. However, when detached vortices es-
cape from the computational box, the line length suddenly
drops. The loss of the vortices balances out the injection and
the growth of the vortices so that the line length saturates.
Although a slight increase in the line length can be seen for
a velocity magnitude of 30 mm/s, the line length almost lies
on line �5� in Fig. 3, which means that the vortices are not
stretched by the sphere. It can be seen that the saturated
value of the line length increases as the oscillation velocity
magnitude increases. For velocity magnitudes above 50
mm/s the saturated line length value is larger than the injec-
tion of vortices, which suggests that vortex tangles are form-
ing around the sphere.

IV. DRAG FORCE

In this section, we propose a method to numerically
evaluate the drag force exerted on a sphere oscillating in
quantum turbulence and calculate it as a function of the mag-
nitude of the oscillation velocity.

A sphere with acceleration dup /dt experiences a force ex-
erted by the fluid given by28

Fd = −
2

3
�a3�s

dup

dt
. �6�

Furthermore, in quantum turbulence, an extra drag force acts
on the sphere for the following reason. In the equilibrium
state of quantum turbulence, the injected vortex rings are
constantly grown by the sphere. The sphere pushes the fluid
and does work on the fluid because the kinetic energy of the
fluid increases due to the stretching of the vortices, and a
consequent reaction force acts on the sphere. The force Fd
described above is the order of 0.01 pN with the parameters
used in this paper, being found negligible compared with the
additional quantum drag force 1 pN, obtained later of the
order of 1 pN.

By considering the energy given to the fluid, the drag
force can be estimated. The derivative of the kinetic energy

K of the fluid with respect to time is given by

dK

dt
=

d

dt
�

V

1

2
�svs

2dV , �7�

where the volume V surrounds the sphere and is chosen to be
large enough so that the superfluid velocity vanishes on the
outer surface of the volume �Fig. 4�.29

Note that the derivative and the integral are not inter-
changeable because the domain of integration changes every
time the sphere moves. To handle the difficulty, we extend
the domain of integration to inside the sphere and make the
domain time independent. Instead we define the density of
the fluid as a function of time and position,

��r,t� = �s���r − x�t�� − a� , �8�

where ��x� is a step function, x�t� is the central position of
the sphere, and a is the radius of the sphere. From Eq. �8�
and Euler’s equation, Eq. �7� becomes

dK

dt
= �

Vall

1

2
vs

2��

�t
dV + �

Vall

��r,t�vs ·
�vs

�t
dV

= �
Vall

1

2
vs

2��

�t
dV + �

V
vs · �s

�vs

�t
dV

= �
Vall

1

2
vs

2��

�t
dV+ �

V
vs	− �p − �s�vs · ��vs
dV

= �
Vall

1

2
vs

2��

�t
dV − �

V

�svs�vs · ��vsdV − �
V

vs · �pdV ,

�9�

where the volume Vall is the sum of V and the volume inside
the sphere.

We derive that the first and second terms on the right-
hand side of Eq. �9� are canceled out. The time derivative of
the integrand in the first term becomes

��

�t
= �s

�

�t
���r − x�t�� − a�

= �s	��r − x�t�� − a���x�r − x�t��� ·
dx�t�

dt

= − �s	��r − x�t�� − a�
r − x�t�
�r − x�t��

· up�t� , �10�
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FIG. 3. �Color online� Vortex line length at different velocities
of the oscillation. �1� 30 mm/s, �2� 50 mm/s, �3� 70 mm/s, �4� 90
mm/s, and �5� vortex line length in the absence of the sphere.

����������	�
 ���

�

FIG. 4. �Color online� Schematic view of the computational box
and volume V.
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where �x is the gradient with respect to x. The delta function
in Eq. �10� transforms the integral of the first term on the
right-hand side of Eq. �9� into the surface integral,

�
Vall

1

2
vs

2��

�t
dV = − �

Vall

1

2
�svs

2	��r − x� − a�

�
r − x

�r − x�
· updV = − �

S

1

2
�svs

2up · dS1,

where the area S is the surface of the sphere, and dS1 points
outside the sphere.

On the other hand, the incompressibility � ·vs=0 leads to
vs�vs ·��vs=�� 1

2vs
2vs� and allows us to rewrite the second

term on the right-hand side of Eq. �9�

�
V

�svs�vs · ��vsdV = �
V

� · �1

2
�svs

2v�dV

= �
S�

�s
1

2
vs

2vs · dS ,

where S� is the sum of S and the outer surface of V. Since the
velocity on the outer surface of V vanishes, only the integral
over the sphere remains, and one obtains

�
V

�svs�vs · ��vsdV = − �
S

1

2
�svs

2up · dS1. �11�

Thus the first and second terms on the right-hand side of Eq.
�9� are canceled out. Then Eq. �9� becomes

dK

dt
= − �

V
vs · �pdV = − �

V

� · �pvs�dV = − �
S

pvs · dS2,

�12�

where the incompressibility is used, and dS2 points inside the
sphere. From Eq. �4�, vs ·dS2=up ·dS2, and Eq. �12� becomes

dK

dt
= − �

S

pup · dS2 = − up · ��
S

pdS2� . �13�

In Eq. �13�, the integral equals the force F f→s exerted by the
fluid on the sphere, and one obtains

dK

dt
= − up · F f→s. �14�

The force F f→s is resolved into the drag force Fdrag parallel
to up and the lift force Flift perpendicular to up, and finally
Eq. �14� becomes

dK

dt
= − up · Fdrag. �15�

Here we assume that Fdrag is antiparallel to up averaged
over a time period Tint much longer than the oscillation pe-
riod and that up and Fdrag oscillate in phase. The first as-
sumption is based on the fact that a drag force giving energy
to the surrounding fluid works against motion of an object.
For the second assumption, it is considered that the drag
force works when the vortices on the sphere are stretched,

and the numerical simulation of Fig. 2 clearly shows that the
vortex stretch is caused by the motion of the sphere.27 As a
result, the drag force is synchronized with the oscillation of
the sphere through the vortex growth without delay, and the
second assumption is found to be valid. Then, taking the
average of Eq. �15� over Tint, we obtain

� dK

dt
� = − up · Fdrag� � up

0 · Fdrag
0 , �16�

where up
0 and Fdrag

0 are the amplitude of each oscillating
quantity. Consequently the drag force is evaluated by divid-
ing dK /dt� by the velocity of the sphere. In the equilibrium
state of quantum turbulence, the increase in the kinetic en-
ergy of the fluid in volume V equals to the energy of the
vortices that escape from the computational box.29 Thus
dK /dt� can be evaluated by averaging the energy of vortices
that escape from the box over time period Tint. The energy of
vortices can approximately be evaluated from its total line
length. The energy of the vortex per unit length is given by


 =
�s�

2

4�
ln� L

a0
� , �17�

where L is the characteristic length in the system, namely the
computational box in this case. The line length of the vorti-
ces escaping from the box is measured over Tint=100 ms,
and the energy is calculated by multiplying Eq. �17� by the
length.30 The line length also includes that of the injected
vortices so the length of the injected vortices is subtracted
from that of vortices that escape from the box.

The drag force is plotted in Fig. 5 as a function of the
oscillation velocity. It should be noted that the unit of the
drag force is pN, which is hundredths of the previously pre-
sented experimental data, say, 0.1 nN in Ref. 10 and 0.05 nN
in Ref. 14. This is explained by the difference in the object
sizes used in the present study in comparison with these pre-
vious experimental studies. In Ref. 10, Jäger et al. used an
oscillating sphere with radius 100 �m, which is a hundred
times larger than ours, and accordingly the vortex tangle cre-
ated around the sphere would be larger than that of the
present results. In Ref. 14, the length of wire over which
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FIG. 5. The drag force and drag coefficient as a function of the
velocity. The dotted line on the left-hand figure indicates the slope
of v2.
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vortex tangle is created is not known because the legs of the
wire are installed on the experimental cell and only the
middle of it can vibrate. Let us suppose a tenth of the wire
effectively contributes to the turbulence. The diameter of the
wire is 2.5 �m and the whole length is 2 mm �then 200 �m
of the wire creates the turbulence�, and the ratio of the wire
size to the sphere is about 60. It is expected that the wire
could create at least 50 times of the size of the vortex tangle
of our results. Hence, the observed difference in magnitudes
of the drag force found by the present study and the previous
experimental observations may be reasonable.

In the range of velocity magnitudes from 50 to 90 mm/s,
the drag force agrees well with a v2 profile. Substituting the
values of the drag force to Eq. �1� yields the drag coefficient,
and such results are plotted in Fig. 5. The order of the drag
coefficient in Eq. �1� is unity, being consistent with the val-
ues found in the related experiments.17

Skrbek and Vinen discussed in Ref. 17 that quantum tur-
bulence created by oscillating objects at zero temperature
also exhibits features similar to those of classical counterpart
by citing various experiments. As we mentioned in Sec. I, the
similarity between these phenomena is confirmed in homo-
geneous and isotropic turbulence as the form of Kolmogor-
ov’s law. It is remarkable that this similarity is numerically
confirmed in another type of turbulence, say, turbulence cre-
ated by oscillating objects.

Skrbek and Vinen17 also described the existence of two
possibilities for the flow of the superfluid. One is quasiclas-
sical laminar flow, in which a vortex tangle of low density is
formed around the objects and the flow of the superfluid
mimics a classical laminar flow. The other is quasiclassical
turbulent flow, in which the density of vortex tangle becomes
high and large scale rotational flow appears, mimicking clas-
sical turbulence. From Fig. 2, vortices of large scale compa-
rable to the sphere size can be seen, and in fact, the flow
exhibits the behavior of Eq. �1�. These agreements evince the
similarity between the classical and quantum turbulences and
support the picture of quasiclassical turbulent flow.

The process whereby the turbulence is created raises the
possibility that the time interval � in which the vortex rings
are injected can affect the drag coefficient.

Table I shows the drag coefficient calculated using differ-
ent time intervals at an oscillation velocity of magnitude 50
mm/s. As the injection interval becomes shorter, the rate of
vortex growth increases, resulting in an increase in the drag
coefficient. However, it may be noted that the drag coeffi-
cient remains of order unity.

V. CONCLUSION AND DISCUSSION

Quantum turbulence was created around an oscillating
sphere, and its evolution was studied. We proposed a method

to evaluate the drag force in quantum turbulence. The drag
force was calculated by considering the energy supplied by
the sphere, and it is proportional to the square of the magni-
tude of the oscillation velocity. This dependency on the ve-
locity is quite similar to that in classical turbulence. The drag
coefficient was also calculated, and its order of magnitude is
in agreement with that of the previous experimental results.
The similarity between classical and quantum turbulences
was confirmed by numerical simulations.

We believe that the drag coefficient has an universal value
independent of the details of the system. Our future work is
to confirm whether the drag coefficient still remains of the
order of unity even if the parameters such as the frequency of
the oscillation and the geometry of the oscillating object are
changed.

The simulations were performed for a smooth sphere, but
the objects used in the experiments have surface roughness.
The roughness may increase the drag force and the drag co-
efficient; when a vortex is detached from the sphere due to
the oscillation, it is likely to leave a small vortex bridge over
the pinning sites on the surface. The small vortex plays a role
of “seed” for the growth of the vortex, and this is equivalent
to injecting more vortices to the sphere, resulting in an in-
crease in the drag force and the drag coefficient. However,
there is no clear way to proceed to obtain the solution of the
equations of motion of vortices under the boundary condi-
tions which describe the surface roughness at present, and
the numerical simulations require a model that phenomeno-
logically depicts the vortex pinning.

Figure 5 enables us to discuss the transition from the tur-
bulent to laminar state. Below oscillation velocities of mag-
nitude 50 mm/s, the drag force starts to deviate from Eq. �1�
and tends to zero. This is because the motion of the sphere is
so slow that vortices cannot be stretched before the attached
vortices leave the sphere, resulting in the drag force tending
to zero. This means that the oscillating sphere can no longer
sustain turbulence and that the flow regime will return to a
laminar state. From dimensional analysis, the critical veloc-
ity at which turbulence returns to laminar flow is given by
vc=c���, where c is constant with the order of unity, and
this formulation agrees with the critical velocity in the
experiments.31 In the simulation, �=10−7 m2 /s, �
=104 rad /s, and finally one obtains vc�30 mm /s. This is
very close to the velocity 50 mm/s below which the devia-
tion from Eq. �1� starts in the simulation. Therefore the ve-
locity magnitude 50 mm/s can be considered in the simula-
tions to represent the critical velocity magnitude.
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TABLE I. The drag coefficient computed for different time in-
tervals. Oscillation velocity is 50 mm/s.

��ms� 0.03 0.05 0.1

CD 0.78 0.68 0.59
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